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In Phys. Rev. E 70, 047102 �2004�, Torgerson and Lamoreaux investigated for the first time the real-
frequency spectrum of the finite temperature correction to the Casimir force, for metallic plates of finite
conductivity. The very interesting result of this study is that the large correction from the TE mode is domi-
nated by low frequencies, for which the dielectric description of the metal is invalid, and the authors correctly
point out that a more realistic description is provided by low-frequency metallic boundary conditions. How-
ever, their subsequent analysis uses an incorrect form of metallic boundary conditions for TE modes. After
correcting this error, we find that their main conclusion was nevertheless qualitatively correct: contrary to the
result of the dielectric model, the thermal TE mode correction leads to an increase in the TE mode force of
attraction between the plates. The correction found by us, however, has a magnitude about 20 times larger than
that quoted by Torgerson and Lamoreaux.
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In the recent literature on the Casimir effect, much atten-
tion has been devoted to the issue of evaluating the correc-
tions to the Casimir force between metallic bodies, arising
from the combined effect of temperature and finite conduc-
tivity of the plates. An estimate of these corrections �1�, us-
ing a dielectric Drude model �with dissipation� for the plates,
leads to surprisingly large deviations from the perfectly con-
ducting case, for separations among the plates greater than a
micrometer or so, at room temperature. Several authors have
criticized the validity of these results, for different reasons.
Torgerson and Lamoreaux �2�, in particular, performed for
the first time a spectral analysis of these thermal corrections
along the real-frequency axis, while standard treatments
based on Lifshitz theory always deal with imaginary fre-
quencies, which have a far less clear physical meaning. The
new result of this very interesting study is that the large
corrections found in �1� arise from TE evanescent modes of
low frequencies. The frequencies involved are sufficiently
low for the dielectric description of the metal to be invalid.
Torgerson and Lamoreaux correctly suggest that a more re-
alistic description of the metal, in the frequency region of
interest, can be obtained in terms of Leontovich surface im-
pedance boundary conditions �BC�. Following the notations
of �2�, we assume that the plates’ surfaces are at z=0 and z
=a. Then, for a TE mode of frequency �, propagating along
the x axis, the BC for a good conductor read as

Ey = ± �Hx, �1�

where the � and � refer to z=0 and to z=a, respectively.
For the surface impedance �, Torgerson and Lamoreaux use
the following expression,

� = �1 − i�� �

8��
, �2�

which is valid for frequencies in the normal skin-effect re-
gion. However, at this point, Torgerson and Lamoreaux use
an incorrect form of the fourth Maxwell’s equation in the
vacuum, their Eq. �8�, which does not take account of the z
component of the magnetic field. Indeed, the magnetic field
present in the empty gap between the plates can be obtained
from the second Maxwell equation,

�� � E� − i
�

c
B� = 0� . �3�

For TE modes, with E� = ŷEy, one obtains

B� =
c

�
�ẑkEy + ix̂

�Ey

�z
� , �4�

where k� is the transverse wave vector. We see that the mag-
netic field has a z component Bz=ckEy /�, which was omit-
ted in Eq. �8� of �2�, whose correct form really is �for �=1�,

�Hx

�z
−

�Hz

�x
= −

i�

c
Ey . �5�

As a consequence of this error, the BC on the magnetic
field given in Eq. �9� of �2� are incorrect. In fact the correct
BC are best written in terms of the electric field. By using the
expression of Hx in terms of Ey, obtained from Eq. �4� above,
we can rewrite the impedance BC for TE modes in Eq. �1� as

Ey = ±
ic�

�

�Ey

�z
. �6�

If one defines the spectrum F� of the thermal correction to
the Casimir force F by the equation,*Electronic address: bimonte@na.infn.it
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d� F� �7�

�attraction corresponds to F�0� by simple computations
analogous to those after Eq. �9� of �2�, one can get the fol-
lowing expression for the TE-mode contribution to F�

�TE�, in
the simple case of two identical plates,

F�
�TE� = �3g���Re �

C

p2 dp	�1 + �p

1 − �p
�2

e−2i�pa/c − 1
−1

,

�8�

which should be used in the place of Eq. �11� of �2�. We note
that Eq. �11� of �2�, in fact, accidentally reproduces, the TM
modes contribution to F�,

F�
�TM� = �3g���Re �

C

p2 dp	� p + �

p − �
�2

e−2i�pa/c − 1
−1

.

�9�

Following Torgerson and Lamoreaux, the integration path is
separated into C1 for p=1 to 0 �which describes the contri-
bution from the plane waves�, and C2 with p pure imaginary
from p= i0 to i
 �corresponding to evanescent waves�. In our
computations, we used for � the expression,

���� =
�0

1 − i��
, �10�

with �0=3�1017 s−1 and �=1.88�10−14 s, which are the
values for Au. We found that, both in the transverse magnetic

sector and in the plane-wave TE sector, the spectra obtained
from Eqs. �8� and �9� coincide, to a high degree of accuracy,
with those derived from dielectric BC. For T=300 K and a
=1 �m, the two approaches lead in these sectors to inte-
grated forces that differ by a few parts in a thousand. Sig-
nificant differences are found only in the evanescent TE sec-
tor. Results of the numerical integration of Eq. �8�, for a
=1 �m, T=300 K are shown in Figs. 1 and 2. We see from
Fig. 2 that the thermal correction from evanescent modes has
a positive sign, which means that it represents an attractive
contribution, contrary to the result obtained from dielectric
BC �see Fig. 1 of �2��, and in agreement with what was
reported by Torgerson and Lamoreaux. The integrated force
for the C2 path is 38 times larger than the C1 integration,
while Torgerson and Lamoreaux reported a result only 1.47
times greater. The total net force for both paths is 36.5 times
larger than the perfectly conducting case, while the above
authors obtained a result 1.75 larger. As discussed in �2�
treatment of the plates as good conductors is not valid above
�=1014 rad/s.

Our conclusion is that, despite the error in the BC, the
qualitative results of Ref. �2� are correct: if one models the
plates as good conductors, one finds that the TE mode ther-
mal correction leads to an increase in the TE mode force,
contrary to what is obtained from the dielectric model, and
the magnitude of the correction is over 35 times larger than
the perfectly conducting case. Finally, we remark that Ref.
�3� reports the same erroneous form of impedance BC for the
TE modes as that of �2�.
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FIG. 1. Plots of the contribution to F� from the C1 path �plane
waves�, for perfectly conducting plates �dashed line� and for finite
conductivity boundary conditions, as functions of log10���. All are
for a=1 �m, T=300 K. Treatment of the plates as conducting met-
als fails above �=1014 rad/s.

FIG. 2. Plot of the contribution to F� from the C2 path �evanes-
cent waves�, for finite conductivity boundary conditions, as a func-
tion of log10���, for a=1 �m, T=300 K. The integrated force is
attractive and has a magnitude 38 times larger than the C1 integra-
tion. The total net force for both paths is 36.5 times greater than the
perfectly conducting case. Treatment of the plates as conducting
metals fails above �=1014 rad/s.
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